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Regular languages and expressions

I A formal language is a set of strings over some alphabet.
I The regular languages are a family of formal languages.
I Regular expressions (RegExs) describe regular languages succinctly.

E.g., RegEx a|ba (“a or ba”) expresses the language {a, ba}.
RegEx a∗ expresses {a, aa, aaa, . . .}.
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RegSet

Train Test
Instruction Input Output Instruction Input Output

(RegEx) (String) (T/F) (RegEx) (String) (T/F)

a∗b aaa F (a∗b)∗ aabab T
a∗b aab T (a∗b)∗ aba F
(ab)∗ aab F (a∗b)∗ aab T
(ab)∗ abab T a∗ aab F
(ab)∗ aabab F a∗ aaa T
… … … … … …
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Expression-level attributes: composition

0.8 0.9 1.0
Accuracy
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perf@90

Low (< 6) 95.2
High (≥ 6) 80.3

More composed expressions
are somewhat harder.



Expression-level attributes: unobserved local structures
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Expression-level: unobserved local structures
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Compositions
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Unobserved local structures
do not contribute to hardness.



Instance-level: execution states
The execuation states of a RegEx r and string x is the number of unique states in the
minimal DFA for r that are visited while recognizing x .

2 4 6
Execution states
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Instances requiring many execution states
are hard.

Hypothesis: instructions that require tracking long contexts are hard.



Hard RegSet

Filter for
I Non-starfree
I Size > 64

I Execution states > 4



Results

Train Eval acc perf@80 perf@90 perf@100

Expl. Expl. IID 97.1 96.4 89.6 69.9
Hard Hard IID 88.9 81.6 65.6 15.2

Expl. Hard OOD 77.2 52.8 23.4 2.0
Hard Expl. OOD 66.8 29.3 11.0 3.8

Hard RegSet remains hard, even in the IID setting.
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