
What Makes Instruction Learning Hard? An Investigation and a
New Challenge in a Synthetic Environment

Matthew Finlayson Kyle Richardson Ashish Sabharwal Peter Clark

matthewf@allenai.org EMNLP 2022 mattf1n.github.io

matthewf@allenai.org
mattf1n.github.io

TL;DR

I Motivation: instruction learning
I What types of instructions can LMs follow?
I Regular languages as instructions

TL;DR

I Motivation: instruction learning

I What types of instructions can LMs follow?
I Regular languages as instructions

TL;DR

I Motivation: instruction learning
I What types of instructions can LMs follow?

I Regular languages as instructions

TL;DR

I Motivation: instruction learning
I What types of instructions can LMs follow?
I Regular languages as instructions

Regular languages and expressions

I A formal language is a set of strings over some alphabet.
I The regular languages are a family of formal languages.
I Regular expressions (RegExs) describe regular languages succinctly.

Regular languages and expressions

I A formal language is a set of strings over some alphabet.

I The regular languages are a family of formal languages.
I Regular expressions (RegExs) describe regular languages succinctly.

E.g., the set of strings containing “a” ({a, aa, ab, . . .}) is a language over the alphabet
{a, b}.

Regular languages and expressions

I A formal language is a set of strings over some alphabet.
I The regular languages are a family of formal languages.

I Regular expressions (RegExs) describe regular languages succinctly.

E.g., the set of strings with an even number of “a”s is regular. The set of strings with
matching parentheses is not.

Regular languages and expressions

I A formal language is a set of strings over some alphabet.
I The regular languages are a family of formal languages.
I Regular expressions (RegExs) describe regular languages succinctly.

E.g., RegEx a|ba (“a or ba”) expresses the language {a, ba}.
RegEx a∗ expresses {a, aa, aaa, . . .}.

Instruction learning

F : R → X → Y

I Instruction language R

(e.g., English)

I Input space X

(e.g., movie reviews)

I Output space Y

(e.g., positive/negative)

Instruction learning

F : R → X → Y

I Instruction language R

(e.g., English)

I Input space X

(e.g., movie reviews)

I Output space Y

(e.g., positive/negative)

Instruction learning

F : R → X → Y

I Instruction language R

(e.g., English)

I Input space X

(e.g., movie reviews)

I Output space Y

(e.g., positive/negative)

Instruction learning

F : R → X → Y

I Instruction language R (e.g., English)
I Input space X (e.g., movie reviews)
I Output space Y (e.g., positive/negative)

RegEx as instruction learning

Regular languages have well-studied properties that we can use to characterize
transformer instruction learning abilities. 🔍

F : R → X → Y

I R = RegExs
I X = Σ∗

I Y = {>,⊥}

RegEx as instruction learning

Regular languages have well-studied properties that we can use to characterize
transformer instruction learning abilities. 🔍

F : R → X → Y

I R = RegExs

I X = Σ∗

I Y = {>,⊥}

RegEx as instruction learning

Regular languages have well-studied properties that we can use to characterize
transformer instruction learning abilities. 🔍

F : R → X → Y

I R = RegExs
I X = Σ∗

I Y = {>,⊥}

RegSet

Train Test
Instruction Input Output Instruction Input Output

(RegEx) (String) (T/F) (RegEx) (String) (T/F)

a∗b aaa F (a∗b)∗ aabab T
a∗b aab T (a∗b)∗ aba F
(ab)∗ aab F (a∗b)∗ aab T
(ab)∗ abab T a∗ aab F
(ab)∗ aabab F a∗ aaa T
… … … … … …

Sampling criteria

I Uniform w.r.t. RegEx size
I Uniform w.r.t. input size
I Balanced examples per RegEx
I Languages represented uniquely and concisely e.g., a|b = a|b|a|b.

Sampling criteria

I Uniform w.r.t. RegEx size

I Uniform w.r.t. input size
I Balanced examples per RegEx
I Languages represented uniquely and concisely e.g., a|b = a|b|a|b.

Sampling criteria

I Uniform w.r.t. RegEx size
I Uniform w.r.t. input size

I Balanced examples per RegEx
I Languages represented uniquely and concisely e.g., a|b = a|b|a|b.

Sampling criteria

I Uniform w.r.t. RegEx size
I Uniform w.r.t. input size
I Balanced examples per RegEx

I Languages represented uniquely and concisely e.g., a|b = a|b|a|b.

Sampling criteria

I Uniform w.r.t. RegEx size
I Uniform w.r.t. input size
I Balanced examples per RegEx
I Languages represented uniquely and concisely e.g., a|b = a|b|a|b.

Training and evaluation

I ByT5-Large to avoid tokenization issues.
I Evaluation: accuracy is misleading.
I We measure the proportion of RegExs for which accuracy is over 90%.

perf@90 =

proportion with over 90% accuracy︷ ︸︸ ︷
Er∈D1(0.9 < E(x ,y)∈Dr1(M(r , x) = y)︸ ︷︷ ︸

accuracy on r

)

Training and evaluation

I ByT5-Large to avoid tokenization issues.

I Evaluation: accuracy is misleading.
I We measure the proportion of RegExs for which accuracy is over 90%.

perf@90 =

proportion with over 90% accuracy︷ ︸︸ ︷
Er∈D1(0.9 < E(x ,y)∈Dr1(M(r , x) = y)︸ ︷︷ ︸

accuracy on r

)

Training and evaluation

I ByT5-Large to avoid tokenization issues.
I Evaluation: accuracy is misleading.

I We measure the proportion of RegExs for which accuracy is over 90%.

perf@90 =

proportion with over 90% accuracy︷ ︸︸ ︷
Er∈D1(0.9 < E(x ,y)∈Dr1(M(r , x) = y)︸ ︷︷ ︸

accuracy on r

)

Training and evaluation

I ByT5-Large to avoid tokenization issues.
I Evaluation: accuracy is misleading.
I We measure the proportion of RegExs for which accuracy is over 90%.

perf@90 =

proportion with over 90% accuracy︷ ︸︸ ︷
Er∈D1(0.9 < E(x ,y)∈Dr1(M(r , x) = y)︸ ︷︷ ︸

accuracy on r

)

Language-level attributes: starfree

a∗ = (∅cb∅c)c ∈ SF

(aa)∗ /∈ SF

Language-level attributes: starfree

a∗ = (∅cb∅c)c ∈ SF

(aa)∗ /∈ SF

Language-level attributes: starfree

a∗ = (∅cb∅c)c ∈ SF

(aa)∗ /∈ SF

Language-level attributes: starfree

0.6 0.8 1.0
Accuracy

Non-SF

SF

Starfree Non-Starfree

perf@90 91.9 71.9

I Non-starfree languages are harder.

Hypothesis: Instructions that require modular counting are hard

Language-level attributes: starfree

0.6 0.8 1.0
Accuracy

Non-SF

SF
Starfree Non-Starfree

perf@90 91.9 71.9

I Non-starfree languages are harder.

Hypothesis: Instructions that require modular counting are hard

Language-level attributes: starfree

0.6 0.8 1.0
Accuracy

Non-SF

SF
Starfree Non-Starfree

perf@90 91.9 71.9

I Non-starfree languages are harder.

Hypothesis: Instructions that require modular counting are hard

Language-level attributes: language size

101 103

Minimum size (log scale)

0.8

0.9

A
cc

ur
ac

y

Small (< 64) Large (≥ 64)

perf@90 95.1 57.5

Bigger languages are harder.

Hypothesis: abstract instructions are harder

Language-level attributes: language size

101 103

Minimum size (log scale)

0.8

0.9

A
cc

ur
ac

y

Small (< 64) Large (≥ 64)

perf@90 95.1 57.5

Bigger languages are harder.

Hypothesis: abstract instructions are harder

Language-level attributes: language size

101 103

Minimum size (log scale)

0.8

0.9

A
cc

ur
ac

y

Small (< 64) Large (≥ 64)

perf@90 95.1 57.5

Bigger languages are harder.

Hypothesis: abstract instructions are harder

Expression-level attributes: composition

∗

∪

a

◦

b

◦

b a

(a|bba)∗

Expression-level attributes: composition

∗

∪

a

◦

b

◦

b a

(a|bba)∗

Expression-level attributes: composition

0.8 0.9 1.0
Accuracy

2

3

4

5

6
C

om
po

sit
io

ns

perf@90

Low (< 6) 95.2
High (≥ 6) 80.3

More composed expressions
are somewhat harder.

Expression-level attributes: unobserved local structures

∗

∪

a

◦

b

◦

b a

(a|bba)∗

{(a|bba)∗, a|bba, a,bba,bb,ba,b}

Expression-level: unobserved local structures

Any 4 5 6
Compositions

0.90

0.92

0.94

0.96

0.98

1.00

A
cc

ur
ac

y
Seen
Unseen

Unobserved local structures
do not contribute to hardness.

Instance-level: execution states
The execuation states of a RegEx r and string x is the number of unique states in the
minimal DFA for r that are visited while recognizing x .

2 4 6
Execution states

0.85

0.90

0.95

A
cc

ur
ac

y

Instances requiring many execution states
are hard.

Hypothesis: instructions that require tracking long contexts are hard.

Hard RegSet

Filter for
I Non-starfree
I Size > 64

I Execution states > 4

Results

Train Eval acc perf@80 perf@90 perf@100

Expl. Expl. IID 97.1 96.4 89.6 69.9
Hard Hard IID 88.9 81.6 65.6 15.2

Expl. Hard OOD 77.2 52.8 23.4 2.0
Hard Expl. OOD 66.8 29.3 11.0 3.8

Hard RegSet remains hard, even in the IID setting.

Results

Train Eval acc perf@80 perf@90 perf@100

Expl. Expl. IID 97.1 96.4 89.6 69.9
Hard Hard IID 88.9 81.6 65.6 15.2

Expl. Hard OOD 77.2 52.8 23.4 2.0
Hard Expl. OOD 66.8 29.3 11.0 3.8

Hard RegSet remains hard, even in the IID setting.

Results

Train Eval acc perf@80 perf@90 perf@100

Expl. Expl. IID 97.1 96.4 89.6 69.9
Hard Hard IID 88.9 81.6 65.6 15.2

Expl. Hard OOD 77.2 52.8 23.4 2.0
Hard Expl. OOD 66.8 29.3 11.0 3.8

Hard RegSet remains hard, even in the IID setting.

Summary

I RegExs are an useful proxy for instruction learning
I Models are not good at modular counting, ambiguous instructions, and

context-dependent tasks.
I There are other factors that make RegExs hard for transformers that are yet

unknown.

Summary

I RegExs are an useful proxy for instruction learning

I Models are not good at modular counting, ambiguous instructions, and
context-dependent tasks.

I There are other factors that make RegExs hard for transformers that are yet
unknown.

Summary

I RegExs are an useful proxy for instruction learning
I Models are not good at modular counting, ambiguous instructions, and

context-dependent tasks.

I There are other factors that make RegExs hard for transformers that are yet
unknown.

Summary

I RegExs are an useful proxy for instruction learning
I Models are not good at modular counting, ambiguous instructions, and

context-dependent tasks.
I There are other factors that make RegExs hard for transformers that are yet

unknown.

