
Course Notes

Matthew Finlayson

CS183 — Fundamentals of Machine Learning (FML)

April 20, 2020

Contents

1 Introduction 3
1.1 Mathematical model for statistical learning 3
1.2 Measuring success of a hypotheses h 4
1.3 How do we find h? . 4

1.3.1 Empirical Risk Minimization 4
1.3.2 Why could ERM be a bad idea? 4

1.4 Inductive bias . 5

2 Learnability 5
2.1 Recap . 5
2.2 PAC learnability . 6
2.3 Agnositc PAC learnability 7
2.4 Learnability via uniform convergence 8
2.5 Section . 10

2.5.1 Perceptron . 10

3 VC-dimensionality 10

1

3.1 PAC learnability recap 10
3.2 Infinite-size classes can be learnable 11
3.3 The VC dimension . 12
3.4 Section . 14

4 Linear predictors, half spaces, regression 15
4.1 Recap . 15

4.1.1 Sample complexity 15
4.2 Linear predictors . 16
4.3 Halfspaces . 16
4.4 Linear programming 18

4.4.1 ERM using LPs in the realizable case 18
4.5 Regression . 18
4.6 Section . 20

5 Convex learning problems 21
5.1 Recap . 21
5.2 Convex loss functions 21

5.2.1 Logistic regression 22
5.2.2 Elements of convex loss functions 23

5.3 Section . 26

6 Gradient descent 26
6.1 Recap . 26
6.2 Gradient descent . 27
6.3 Stochastic gradient descent 28

7 Surrogate loss functions, SVMs, regularization 29
7.1 Surrogate loss functions 29
7.2 SVMs . 30

7.2.1 Hard-SVM . 31
7.2.2 Hard SVM sample complexity 31

2

7.3 Regularization . 32

8 Apocalypse 33

9 Neural Networks 33
9.1 Recap . 33
9.2 Logistic loss to neural networks 34
9.3 Expressivity of NNs: how powerful is a neural net? . . 34
9.4 Sample and time complexity 35
9.5 Forward propagation and backpropagation 36

10 k-clustering 37
10.1 Finding a good objective is non-trivial 37
10.2 k-means objective . 38
10.3 Other clustering objectives 39

11 Unsupervised learning 39

12 Max cover 39

13 Unsupervised learning as max cover 42
13.1 Submodularity and examples 42
13.2 Clustering as a submodular objective 43

1 Introduction

Premise: Machine Learning follows a deep and rigorous theory that
can be harnessed to create magic in AI and the data sciences.

1.1 Mathematical model for statistical learning

• Example x: are drawn i.i.d form some unknown prob dist D

3

• There is a deterministic function f : X → Y s.t. ∀(xi, yi) ∈ X×Y ,
yi = f(xi)

1.2 Measuring success of a hypotheses h

• Given h the loss can be measured as:

LD(h) := Px∼D[h(x) 6= f(x)]

The loss of h on D.

1.3 How do we find h?

1.3.1 Empirical Risk Minimization

Design h such that it minimizes the empirical loss, where the empirical
loss is the number of (xi, yi) ∈ S s.t. h(xi) 6= yi.

LS(h) :=
|{xi ∈ Sx : h(xi) 6= f(xi)}|

m

Find hs ∈ argminLS(h)

1.3.2 Why could ERM be a bad idea?

h(x) =

{
yi ∀xi ∈ Sx : x = xi

0 o.w.

Empirical loss of hS: LS(h) = 0

True loss of hS: LD(h) = 1
2 . This is just flipping a coin. This is refered

to as overfitting.

4

1.4 Inductive bias

Restrict the search space of possible classifiers to some predefined class
H.

ERMH(S) := argmin
h∈H

LS(h)

This could be the set of lines through a point, set of quadratic equations,
neural networks, or anything.

Theorem 1 (PAC learnability). Let H be finite and suppose that
H is good in that ∃h∗ ∈ H s.t. LD(h∗) = 0 (realizability assump-
tion). Given S = {(x1, y1), . . . , (xm, ym)} where xi ∼ D i.i.d., let
hS ∈ argminh∈H LS(h). Then ∀ε, δ ∈ (0, 1) with probability 1− δ over
S: LD(hS) ≤ ε when m ≥ log(|H|/δ)/ε.

Proof. Suppose hS ∈ argminh∈H LS(h) but hS has error ≥ ε. A hy-
pothesis is bad if its ture error LD(h) ≥ ε; HB is the set of all bad
hypotheses in H. A sample S is misleading if ∃ bad hypothesis s.t.
∀x ∈ S, h(x) = h∗(x). For a given bad hypothesis, what is the proba-
bility that h classifies a point correctly is < 1− ε ≤ e−ε. The likelihood
of bad classifier correctly calssifying m points is < (1 − ε)m < e−εm.
The probability of S being misled is |HB|e−εm ≤ |H|e−εm = δ.

2 Learnability

2.1 Recap

Mathematical model for statistical learning

• Sample S = {(x1, y1), . . . (xm, ym)} of m examples where xi ∼
i.i.d. from unknown dist. D such that x ∈ X, y ∈ Y .

• Labeling funciton f : X → Y .∀y ∈ Y yi = f(xi).

5

• Goal: Design h : X → Y that is LD(h) ≤ ε for any ε ∈ (0, 1) with
probability 1− δ.

• Measuring performance of classifier h:

LD(h) := Pr
x∼D

[h(x) = y]

• Empirical loss:

LS(h) = Pr
x∼Su.a.r.

[h(x) 6= y]

• Minimizing empirical loss can lead to overfitting.

• Inductive bias: Minimize empirical loss over some hypothesis
class H. Restricting search space to H can mitigate overfitting.

ERMH(S) := min
h∈H

LS(h)

• Realizability assumption: ∃h∗ ∈ H s.t. LD(h∗) = 0.

2.2 PAC learnability

Definition 1 (PAC learnable). A hypothesis class H is PAC learnable
if there exists function mH : (0, 1)2 → N and learning algorithm with
the following property: ∀ε, δ ∈ (0, 1), every dist. D, every labeling
function f : X → {0, 1}, if the realizability assuption holds w.r.t H, f ,
D, then running the algorithm on m ≥ mH(ε, δ) examples drawn i.i.d.
from D the algorithm returns h : X → Y s.t. LD(h) ≤ ε w.p. 1− δ.

In other words

Pr[LD,f(h) < ε] ≥ 1− δ ⇔ |S| ≥ mH(ε, δ)

6

Probably (δ, confidence) Approximately (ε, approximation or precision)
Correct (LD(h) = 0).

(PAC learnability theorem) Given realizability, every finite hypothesis
class is PAC learnable, and the sample complexity is at most mH(ε, δ) =
log(|H|/δ)/ε.

2.3 Agnositc PAC learnability

We want to remove the realizability assumption. There are classes that
will not be perfectly learnable. We therefore set a new goal.

New goal: Find the h s.t. LD(h) ≤ minh∈H LD(h) + ε.

What if f is not deterministic? Instead there is a probability distribu-
tion, each x has a some probability that y = 1.

Let D be a joint probability distribution over X × Y .

LD(h) = Pr
(x,y)∼i.i.d.D

[h(x) 6= y]

LS(h) = Pr
(x,y)∼u.a.r.S

[h(x) 6= y]

Agnostic - the labels are from a distribution, not from a “higher power”
f .

Example 1. Not classifying, but predicting (height vs. shoe size). This
is a regression problem (as opposed to a classification problem.)
We want to have a general way of talking about both.

In classification, LD(h) = Pr[h(x) 6= y].

l0−1(h, (x, y)) =

{
0 h(x) = y

1 h(x) 6= y

7

In regresssion: LD(h) = E[(h(x)− y)2]

lsq(h, (x, y)) = (h(x)− y)2

Generalized loss functions:

LD(h) = Ez∼D[l(h, z)]

LS(h) = (1/m)
m∑
i=0

l(h, zi)

Examples: z ∈ X × Y

Definition 2 (Agnostic PAC learnability). A hypothesis class H is
agnostic-PAC-learnable w.r.t. a set Z = X × Y and loss function
l : H× Z → R if there exists some mH : (0, 1)2 → N and learning alg
with the following property: For all ε, δ ∈ (0, 1), every dist. D over Z,
when running alg on m ≥ mH(ε, δ) examples drawn i.i.d. from D the
alg returns h s.t.:

LD(h) ≤ min
h∈H

LD(h) + ε

with probability 1− δ.

2.4 Learnability via uniform convergence

Definition 3 (ε-representative). A sample S of examples drawn i.i.d.
from D is ε-representative if for all h ∈ H, |LS(h)− LD(h)| ≤ ε.

Definition 4 (Uniform convergence). H has uniform convergence
property if for all ε, δ ∈ (0, 1) and every probability dist. D over Z, if S
is m ≥ mH(ε, δ) examples drawn i.i.d. from D then S is ε-representative.

Theorem 2 (Agnostic PAC learnability). IfH has uniform convergence
property then H is agnostically PAC learnable with sample complexity
mH(ε/2, δ). Furthermore, ERMH paradigm produces the hypothesis.

8

Proof. Let hS ∈ argminh∈H LS(h).

LD(hS) ≤ LS(hS) + ε/2 ≤ min
h∈H

LS(h) + ε/2 ≤ min
h∈H

LD(h) + ε

Lemma 2.1. Every finite hypothesis class has the uniform convergence
property.

Proof. Fix some ε, δ. We need to prove

Pr[{S : ∀h ∈ Hs.t.|LS(h)− LD(h)| ≤ ε}] ≥ 1− δ

or
Pr[{S : ∃h ∈ Hs.t.|LS(h)− LD(h)| > ε}] < 1− δ

This probability is bounded by∑
h∈H

Pr[S : |LS(h)− LD(h) > ε]

Reminder:

•
LD(h) = Ez∼D[l(h, x)]

•

LS(h) = (1/m)
m∑
i=0

l(h, zi)

• Any given h is fixed, z is drawn i.i.d., thus l(h, z) also drawn
i.i.d..

• Every zi is drawn i.i.d. therefore l(h, zi) has mean Ez∈D[l(h, z)] =
LD(h) and linearity of expectation says E[LS(h)] = LD(h).

9

By the Hoeffding bound where θi = l(h, zi), LS(h) = (1/m)
∑m

i=1 θi.
LD(h) = µ. ∑

h∈H

Pr[S : |LS(h)− LD(h)| > ε] ≤ |H|2e−2mε2

mH = log(2|H|/δ)/(2ε2)

Hoeffding bound: Let θ1, . . . , θm be a sequence of r.v. drawn i.i.d.
and assume for all E[θi] = µ and Pr[a ≤ θi ≤ b] = 1 then for all ε:
Pr[|1/m

∑m
i=1 θi − µ| > ε] ≤ 2e−2mε

2

= δ.

2.5 Section

2.5.1 Perceptron

The perceptron algorithm is a learning algorithm tha timplememts the
ERM rule fo binary classification tasks. It ouputs a predictor of the
form w = (w0, . . . , wn).

3 VC-dimensionality

(the peak of theoretical obscurity)

3.1 PAC learnability recap

• Mathematical model for statistical learning:

– Given S = {(x1, y1), . . . , (x,ym)}

– Assuming ∃ distribution D over X × Y .

10

– And each example s ∈ S is drawn i.i.d. from D.

– Goal: design alg that produces hypothesis h : X → Y s.t.

LD(h) ≤ min
h∈H

LD(h) + ε

with probability 1− δ.

• True error: LD(h) = Pr(x,y)∼D[h(x) 6= y]

• Empirical error: LS(h) = Pr(x,y)uar∼ S[h(x) 6= y]

• Proved: Every finite hypothesis class H is PAC learnable.

3.2 Infinite-size classes can be learnable

Example 2. Let H be theclass of threshold functionsin R.

H = {ha : a ∈ R}

ha(x) =

{
1 x < a

0 x ≥ a

This is a linear classifier in 1 dimension. |H| = ∞, but we will show
that H is PAC learnable.

Lemma 2.2. Let H be the class of threshold funcitns. Then H is PAC
learnable using the ERM rule with sample complexity mH ≤ log(2/δ)/ε.

Proof. Let a∗ be s.t. LD(ha∗) = 0. There exist a0 ≤ a∗ ≤ a1 s.t. the
probability masses from a0 to a∗ and also from a∗ to a1 are ε. Given
S, b0 is the largest example with label 1, b1 is the smallest example
with label 0. Choose bs such that b0 ≤ bs ≤ b1. Therefore LD(hbs) = 0,
therefore it is an ERM. Letting

11

Pr[LS(hbs) > ε] ≤ Pr[b0 < a0 or b1 > a1]

or
≤ Pr[b0 < a0] + Pr[b1 > a1]

We have that

Pr[b0 < a0] = Pr[∀x ∈ Sx, x /∈ (a0, a
∗)] = (1− ε)m ≤ eεm

(Use symmetry for other side.) We can thus find an upper bound on
the sample size complexity.

This is tedious specific to one hypothesis class. How can we generalize?

3.3 The VC dimension

Named after Vaphic and Chervonekis who came up with the idea in
1970 (50 years ago!)

Theorem 3 (No Free Lunch). If we don’t restrict the hypothesis class,
then we cannot learn. In other words without a restriction on the
hypothesis class H, for any algorithm, an adversary can construct a
solution s.t. the algorithm does not have an error less than ε with
probability greater than 1− δ.

Definition 5 (Restriction). Let H be a class of functions from X to
{0, 1} and C ⊆ X where |C| = m. The restriction of H on C, denoted
HC is the set of all functions we can derive from H from C → {0, 1}.

HC := {(h(C1), . . . , h(Cm)) : h ∈ H}

Thus an element of HC can be written as a string in {0, 1}m.

12

Definition 6 (Shattering). A hypothesis class H shatters C if HC is
the set of all functions C → {0, 1}, or in other words |H| = 2|C|.

If no such C exists, V Cdim(H) =∞

Example 3 (Shattering). Let C = {C1}, H is the class of threshold
functions. Does H shatter C? HC = {0, 1}, therefore yes.

Now let C = {C1, C2} where C1 < C2. Does H still shatter C? No
because 01 /∈ HC .

Definition 7 (VC dimension). The VC dimension of a hypothesis class
H denoted V Cdim(H) is the size of the maximal size of the set C that
can be shattered by H.

Corollary 3.1. Let H be a hypothesis class form X to {0, 1}. Let
m be a training set size. Assume there is C ⊂ X of size 2m that
is shatteredby H. Then forany learnying algorithm A there exists a
distribution D over X × {0, 1} and predicotr h ∈ H s.t. LD(h) = 0
but with probability greater than 1/7 over chnoice of S ∼ D we have
LD(A(S)) ≥ 1/8 despite realizability.

Theorem 4 (Finite VC dimensional requirement for PAC learnability).
Let H be a class with inifinte VC dimension. Then H is not PAC
learnable.

Proof. H has infinite VC dimension. Therefore for any training size m
there exists some set C of size 2m shattered by H. By corollary, not
PAC learnable.

It turns out that the converse of our theorem is true.

Example 4. To prove the VC dimension of a hypothesis class H is d:

1. Prove there is a set of size d that is shattered by H.

13

2. Prove all sets of size d+ 1 are not shattered by H.

Prove VC dimensionality of

• Ha,b is the set of intervals

{hab : a, b ∈ R, a ≤ b}

hab =

{
1 x ∈ (a, b)

0 o.w.

Answer: 2

• Rectangles Ha1,a2,b1,b2. Answer: 4

Theorem 5 (PAC learnability from finite VC dimensionality). If H
has finite VC dimension then H has the uniform convergence property.

Proof idea. If V Cdim(H) = d then |HC | = O(|C|d) (Sauer’s Lemma.)
If |HC | = O(|C|d) then uniform convergence holds. Full proof can be
found in chapter 6 (look for proofs with astrisk.)

3.4 Section

Hints for proving VC dimensionality.

1. Find a ‘convex hall’ such that there exists a point within certain
bounds.

2. Generalize this

14

4 Linear predictors, half spaces, regres-
sion

4.1 Recap

Given S of lenght m, find h : X → Y where s ∈ S is drawn i.i.d
from unk distribution D such that LD(h) ≤ minh∈H LD(h) + ε with
probability greater than 1− δ.

See LD definition for classification from lecture 2. We also have LS,
the empirical loss (or risk). We try to minimize LD by minimizing LS
using an ERM .

ERM(S) = argmin
h∈H

LS(h)

H is PAC learnable iff VC dimension of H is finite. If VC dimension of
H is finite, H is PAC learnable via ERM .

What is the connectoin between ERM and PAC learnability.

4.1.1 Sample complexity

X ∈ Ra, Y ∈ {0, 1}. If H has VC dimension d then H is agnostic PAC
learnablie with

C1

(
d+ log(1/δ)

ε2

)
≤ mH(ε, δ) ≤ C2

(
d+ log(1/δ)

ε2

)
and H is PAC learnable (assuming realizability) with

C1

(
d+ log(1/δ)

ε

)
≤ mH(ε, δ) ≤ C2

(
d log(1/ε) + log(1/δ)

ε

)

We want to minimize sample complexity.

15

4.2 Linear predictors

Prediction rules based on linear functions. Easy to do ERM on these.

The class of affine functions:

Ld = {hw,b : w ∈ Rd, b ∈ R}

where
hw,b(x) = 〈w, x〉+ b = w>x+ b =

∑
i∈[d]

wixi + b

The class of homogeneous linear functions:

L′d = {hw(x) : w ∈ Rd}

where hw(x) = 〈w, x〉 = w>x

Any affine function can be rewritten as a homogeneous fn by appending
1 to x and b to w.

Hypothesis classes using linear functions:

ϕ ◦ L
where ϕ : R→ Y in class funciton

ϕ(z) = sign(z) =

{
1 z ≥ 0

0 z < 0

4.3 Halfspaces

Example 5. X ∈ R2, Y ∈ {−1, 1}.

16

Definition 8 (Halfspace). Halfspaces are the regions separated by a
hyperplane (plane of dimension d− 1.)

HSd = sign ◦ Ld = {x→ sign(hwb(x)) : hwb ∈ Ld}

What is the sample complexity?

Theorem 6. The class of homogeneous halfspaces from X ∈ Rd to
Y ∈ {0, 1} has VC dimensoin d. Therefore the sample complexity is

m(ε, δ) ≤ C(
d+ log(1/δ)

ε2

Proof.

1. We show that there is a set C of size d shattered by H. consider
basis vectors e1, . . . , ed. I assert that this set is shattered by HSd.
For all labeling y1, . . . , yd, consider w = (y1, . . . , yd). w

>ei = yi
for all i. Therefore HSd shatters C of size d.

2. Consider x1, . . . , xd+1. Exists a1, . . . , ad+1 s.t.
∑

i∈[d+1] xiai = 0.

where ai 6= 0. Define I = {i : ai > 0}, J = {j : aj < 0}.
Assume that x1, . . . , xd+1 are shattered by HSd. So there is a
w s.t. w>x ≥ 0 foor all i ∈ I and w>x ≤ 0 for all j ∈ J . Lets
assume both I and J are nonempty.∑

i∈I

aixi =
∑
j∈J

|aj|xj

0 <
∑
i∈I

ai〈w, xi〉

. . .

Show both I and J cannot be nonempty. Contradiction.

17

Now all we need to do is find a poly-time algorithm for ERM on
halfspaces.

Goal: Design algorithm for solving ERM(S) when H is the class of
halfspaces. Today: Realizable case. Linear programming. Perceptron.

4.4 Linear programming

LP is a framework for solving problems that can be formulated as find
maxu>x such that Ax ≥ v where w ∈ Rd, A is a m× d matrix, v is in
Rm, in polynomial time.

4.4.1 ERM using LPs in the realizable case

Given S of size m. We are looking for w ∈ Rd s.t. sign(w>xi) = yi for
all i ∈ [m].

Equivalently, we want yi〈w, xi〉 > 0 for all i ∈ [m].

Finding w using LPs: Let w∗ be the vector that respects yi〈w∗, xi〉 > 0
for all i. By realizability, we know that this exists. Define γ =
mini∈[m] yi〈w∗, xi〉. Define w̄ = (w∗/γ). We have that

yi〈w̄, xi〉 = (1/γ)yi〈w∗, xi〉 ≥ 1

There exists some w̄ s.t. yi〈w̄, xi〉 ≥ 1 for all i ∈ [m].

Aij = yixij, v = {1}m. Use dummy objective u = {0}d. Solve LP
maxu>w s.t. Aw ≥ v to get separating hyperplane.

4.5 Regression

Hreg = Ld = {x→ 〈w, x〉+ b : w ∈ Rd, b ∈ R}

18

Loss function:
l(h(x, y)) = (x− y)2

ERM for regression:

LS(h) = (1/m)
∑
i∈[m]

(h(x)− y)2

Find argminh∈H LS(h).

Alternatively l(h(x, y)) = |h(x)− y| which can be solved with LP.

For single dimension:

min
w∈R

(1/m)
∑
i∈[m]

(yi − wxi)2

g(w) = (1/m)
∑
i∈[m]

(yi − wxi)2

Goal find argminw∈R g(w). In pieces, find argminw(yi − wxi)2.

∂(yi − wxi)2/∂w = 2wx2i − 2xiyi

∂g(w)

∂w
= 2

∑
i∈[m]

wx2i − xiyi

The second derivative is positive, so extrema will be min.

∂g(w)

∂w
= 0⇔ w =

∑
i∈[m] xiyi∑
i∈[m] x

2
i

This can be generalized to higher dimensions.

Next time: what if we don’t have realizability? Convex loss functions,
stochastic gradient descent.

19

4.6 Section

HSd = {sign(Hwb(x))}

Alg. Input: training set S. w0 = 0 while true: for i ∈ [m] if yi〈wt, xi〉 ≤
0 then wt+1 ← wt + yixi and t← t+ 1. If no update in 1 interation of
i then break.

Proof. Update will occur in direction of error. 〈w, x〉 < 0 therefore
y = sign(〈w∗, x〉) = 1. w ← w + x>y = w + x. R = maxi∈[m] |xi|,
B = minw{|w| : 〈w, x〉y ≥ 1,∀i} satisfied by w∗.

Claim: Perceptron terminates in ≤ (RB)2 steps.

Big Idea: cos(wt, w∗) ≤ 1, = 〈wt, w∗〉/(||wt||||w∗||).

Induct on see iPhone photos.

||wt+1||2 = ||wt+yixi||2 = ||wt||2+〈wt, yixi〉+||yi ·xi||2 = ||wt||2+0+R2.
||w0|| = 0⇒ ||wt|| ≤ tR2.

1 ≤ 〈wt, w∗〉
||wt||||w∗||

≤ t/
√
tRB

⇒
√
t/RB ≤ 1⇒ t ≤ (RB)2

Mistake bound. Perceptron is a mistake bound.

Polynomial expansion: xi = (xi1, xi2) to x′i = (x2i1, x
2
i2, xi1xi2, xi1, xi2, 1).

Exercise 1 in 9.6.
LS =

∑
i∈m
|w · xi − yi|

si = |w · xi − yi|
si ≥ w · xi − yi

20

−si ≤ w · xi − yi
x = (w1, . . . , wd, s1, . . . , sm)

See iPhone photos

5 Convex learning problems

5.1 Recap

Linear predictors have form φ ◦ f(x) where f(x) = w> + b φ : R→ R.
Examples:

• Halfspaces, where φ = sign

• Linear regression f(x) = w>x.

Theorem: VC dimension of halfspaces is d therefore they are efficiently
learnability (small sample complexity). Furthermore, in the separable
case half spaces are computationally efficiently learnable. Computa-
tional feasabiliy: perceptron, LP can solve

ERMH(S) = argmin
w∈Rd

∑
i∈[m]

|sign(w>x)− yi|

in polynomial time.

Linear regression: using least squared error. Doing ERM on this
hypothesis class can be done analytically.

5.2 Convex loss functions

Convex loss functions are desireable.

21

5.2.1 Logistic regression

Sometimes data is not separable, so linear classifiers will be computa-
tionally hard to learn.

We learn hypothesis h : R→ [0, 1]. h(x) is the probability that x is 1.
φ is sigmoid.

φ(z) =
1

1− e−z
So we let

hw(x) =
1

1 + e−w>x

Properties: hw(x) should be large when y = 1 and 1− h(x) should be
large when y = −1. Rearranging 1− hw(x) we get

1− hw(x) =
1

1 + ew>x

and we want a loss fn that will monotonically increase with

1

1 + exp(y(w>x))

and thus should increase monotonically with 1 + exp(−y(w>x)). Let
us choose logistic loss

log(1 + exp(−y(w>x)))

Therefore ERM for logisitc regression is

argmin
1

m

∑
i∈[m]

log(1 + exp(−yi(w>xi)))

This loss is nice because it is convex and therefore ideal for stochastic
gradient descent.

22

5.2.2 Elements of convex loss functions

Definition 9 (Convex set). A set C is called convex if for any x1, x2 ∈ C
we have that λx1 + (1− λ)x2 ∈ C for λ ∈ [0, 1], or in other words, the
line between any two points in the set is in itself the set.

Definition 10 (Convex function). for a convex set C we say that
f : C → R is convex if for any x1, x2 ∈ C, λ ∈ [0, 1]:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

Nice properties: A local minimum of a convex function is also the global
minimum.

Definition 11 (Local optimum). For a minimization problem, a solu-
tion x∗ ∈ C is locally optimal if there exists ε > 0, f(x∗) ≤ f(x) for all
x ∈ C s.t. ||x− x∗||2 < ε.

Theorem 7 (Local optimums of convex functions are global optimums).
Let C be convex set, f : C → R is convex then if x∗ is locally optimal,
it is also globally optimal.

Proof. For a contradiction, assume x∗ is locally optimal but there is
some y ∈ C s.t. f(y) < f(x∗). Let z = λx∗ + (1− λ)y.

f(z) = f(λx∗ + (1− λ)y)

≤ λf(x∗) + (1− λ)f(y)

< λf(x∗) + (1− λ)f(x∗)

= f(x∗)

Therefore f(z) < f(x∗) which contradicts local optimality of x∗.

Properties of convex functions:

23

• For every u, f(u) ≥ f(w) + 〈∇f(w), u − w〉. (all points can be
bounded below by a linear fn)

• ∇f(w) =

∂f(w)∂w1

. . .
∂f(w)
∂wd


Lemma 7.1. Let f : R → R be a twice differentiable fn. Then the
following are equivalent.

1. f is convex

2. f ′ is monotonically nondecreasing

3. f ′′ ≥ 0

Example 6.

• f(x) = x2 is convex. Therefore f ′(x) = 2x which is monotonically
nondecreasing. f ′′(x) = 2 ≥ 0.

• f(x) = log(1 + exp(x)) is convex. f ′(x) = 1/(exp(−x) + 1) is
monotonically nondecreasing.

Claim 1. Assume that f : Rd → R is f(w) = g(w>x + y) for some
x ∈ Rd, y ∈ mbbR, and g is convex, then f is also convex.

Proof.

f(λw1 + (1− λ)w2) = g(〈λw1 + (1− λ)w2, x〉+ y)

≤ λg(w>1 x+ y) + (1− λ)g(w>2 x+ y)

Example 7 (Square and logistic loss functions are convex). f(w) =
(w>x− y)2 is convex (squared loss). f(w) = log(1 + exp(−y〈w, x〉)) is
convex when y ∈ {−1, 1} (logistic loss).

24

Claim 2. Let f1, f2 be convex functions fi : Rd → R then the following
funcitons are alos convex:

• g(x) = maxi∈[r]fi(x)

• g(x) =
∑

i∈[r] αifi(x) where α ≥ 0 for all i ∈ [r].

Proof. See p. 160 of UML

Example 8 (Absolute value function). g(x) = |x|. g(x) = max(−x, x).
x and −x are convex, thus g is convex.

Definition 12 (ρ-Lipschitz). Let C ⊂ Rd. A function f : Rd → R is
ρ-Lipschitz over C if for all w1, w2 ∈ C

||f(w1)− f(w2)|| ≤ ρ||w1 − w2||

Example 9. f(x) = |x| is 1-Lipschitz over R because |x1 − x2| ≤
|x1 − x2|.

f(x) = log(1 + exp(x)) is 1-L: |f ′(x)| = |1/(exp(−x) + 1) ≤ 1.

f(x) = x2 is not ρ-L over R for any ρ, but it is ρ-L over C = {x : |x| ≤
ρ/2}.

f(x) = v>x+ b is ||v||-L over R.

Claim 3. Let f(x) = g(h(x)) where g is a-L and h is b-L, then f(x) is
ab-L.

Proof. Immediate from definition.

Example 10. h is a linear function, then f(x) is (a||v||)-L.

Definition 13 (β-smooth). A differentiable fn f : Rd → R is β-smooth
if ||∇f(x1)−∇f(x2)|| ≤ β||x1 − x2||.

25

Claim 4. If f is β-smooth then for all v, w ∈ C,

f(v) ≤ f(w) + 〈∇f(w), v − w〉+
β

2
||v − w||2

Also, ||∇f(w)||2 ≤ 2βf(w).

Claim 5. Let f(w) = g(w>x + b) where g is β-smooth then f is
β||x||2-smooth.

Next week: gradient descent.

5.3 Section

H ∈ R, l(w, (x, y)) = (wx− y)2 is not PAC learnable. See 12.8 in UML.

6 Gradient descent

6.1 Recap

Linear regression

Definition 14 (Convex learning problem). A learning problem is con-
vex if the hypohesis class H is a convex set and for all z ∈ Z, l(·, x) is
a convex function.

Lemma 7.2. For a convex learning problem H,Z, l ERM reduces to a
convex optimization problem.

Proof. Given S = {(xi, yi)}mi=1 = {zi}mi=1, for all h ∈ H

LS(h) =
1

m

∑
i∈[m]

l(h, z)

26

is a convex function.

ERMH(S) = argmin
h∈H

LS(h)

6.2 Gradient descent

Initialize: w1 ← 0, η, T . For t = 1, . . . , T do: compute ∇f(wt),
wt+1 ← wt − η∇f(wt). Return w̄ = 1

T

∑
i∈[T]w

t.

We return the average?

Theorem 8 (Gradient descent on ρ-Lip loss functions). Let f be a
convex function that is ρ-Lipschitz, then running gradient descent with
step size η =

√
B2/(ρ2T) and T ≥ B2ρ2/ε2 then f(w̄) − f(w∗) ≤ ε

where w∗ ∈ argminw:||w||≤B f(w).

Proof.

f(w̄)− f(w∗) = f((1/T)
∑
t∈[T]

wt − f(w∗)

≤ (1/T)
∑

f(wt)− f(w∗)

= (1/T)
∑

(f(wt)− f(w∗))

≤ (1/T)
∑
〈wt − w∗,∇f(wt)〉

≤ Bρ/
√
T by the following lemma

Lemma 8.1. Let v1, . . . , vT be an arbitrary sequence of vectors, w1 = 0,

27

and update rule is wt+1 = wt − ηvt then∑
t∈[T]

〈wt − w∗, vt〉 ≤
||w∗||2

2η
+ (η/2)

∑
||vt||2

for ||vt|| ≤ ρ (ρ-Lipschitz), η =
√
B2/ρ2T , ||w∗|| ≤ B:

1/T
∑
〈wt − w∗, vt〉 ≤ Bρ/

√
T

Proof.

〈wt − w∗, vt〉 = (1/η)〈wt − w∗, ηvt〉
= (1/2η)

(
−||wt − w∗ − ηvt||2 + ||wt − w∗||2 + η2||vt||2

)
= (1/2η)(−||wt+1 − w∗||2 + ||wt − w∗||2) + (η/2)||vt||2

. . . ∑
〈wt − w∗, vt〉 ≤

||w∗||2

2η
+ (η/2)

∑
||vt||2

≤ ||w
∗||2

2η
+ (η/2)Tρ

≤ . . .

≤ Bρ/
√
T

(Telescoping sum) Choosing T ≥ B2ρ2/ε2 we get our proof.

6.3 Stochastic gradient descent

Computing ∇f(wt) is hard to compute with all your data. Very costly.

Initialize: w1 ← 0, η, T . For t = 1, . . . , T do: compute ∇̃f(wt),
wt+1 ← wt − η∇f(wt). Return w̄ = 1

T

∑
i∈[T]w

t.

28

Definition 15 (Unbiased estimator). ∇̃f(w) is an unbiased estimator

of the gradient of f of w ∇f(w) if E[∇̃f(w)] = ∇f(w).

For our loss, ∇f(w) = (1/m)
∑

i∈m∇l(w, (x, y)). If m is large, this
is a big sum. Why don’t we just sample uniformly at random and
use a subset of our sample with size n < m. We will still converge to
the minimum, but drunkenly (not in the most efficient path.) Rate of
convergence is slower, but is cheap and still works.

Theorem 9 (Stochastic gradient descent on ρ-Lipschitz loss functions).
Let f be a convex function that is ρ-Lipschitz, then running stochastic
gradient descent with step size η =

√
B2/(ρ2T) and T ≥ B2ρ2/ε2 then

E[f(w̄)]− f(w∗) ≤ ε where w∗ ∈ argminw:||w||≤B f(w).

ERMH(S) ∈ argmin
h∈H

LS(h) ≈ argmin
h∈H

LD(h)

This is big. It means optimization is approximately machine learning.

7 Surrogate loss functions, SVMs, regu-
larization

7.1 Surrogate loss functions

What happens if l is not convex? Implementing ERM can be computa-
tionally hard.

Example 11 (0-1 loss).

l0−1(w, (x, y)) = 1y 6= sign(〈w, x〉)

Approach: use a surrogate loss function that

1. Is convex

29

2. Has an upper bound on the original loss.

Hinge loss:
lhinge(w, (x, y)) = max(0, 1− y〈w, x〉)

Generalization:

LhingeD (A(S)) ≤ min
w∈H

LhingeD (w) + ε

Since surrogate:
L0−1
D (A(S)) ≤ LhingeD (A(S))

Therefore
L0−1
D (A(S)) ≤ min

w∈H
LhingeD (w) + ε

Thus

LhingeD (A(S)) ≤ min
w∈H

L0−1
D (w) + (min

w∈H
LhingeD (w)−min

w∈H
L0−1
D (w)) + ε

First term: Approximation error. Second term: Optimization error.
Third term: Estimation error.

7.2 SVMs

Support vector machines.

Example 12. (Assuming separable case) there are multiple ERM
solutions. We want to select the one such that the distance to each
example is maximized.

Main idea: the true error of a halfspace can be bounded in terms of
the margin over the training sample.

Definition 16 (Lineary separable). A training set S consisting of m
points is linearly separable if there exists some halfspace (w, b) such
that yi = sign(〈w, xi〉+ b).

30

Claim 6. The distance between a point x ∈ Rd and hyperplane (w, b)
with ‖w‖ = 1 is |〈w, x〉+ b|.

7.2.1 Hard-SVM

max
(w,b):‖w‖=1

min
i∈[m]
|〈w, xi〉+ b|

such that for all i, yi(〈w, xi〉+ b) ≥ 0. Simplifying we get the equivalent
problem

max
(w,b):‖w‖=1

min
i∈[m]

yi(〈w, xi〉+ b)

Finally, we have the equivalent

argmin
(w,b)

‖w‖2

such that yi(〈w, x〉+ b) ≥ 1. This is a linear programming problem.

7.2.2 Hard SVM sample complexity

Recall that the VC dimension of halfspaces is d+ 1. Also, the funda-
mental theorem of learning: if m much smaller than d/ε cannot learn
ε-accurate halfspaces. So what if d is very large?

Definition 17 (Margin). A distributionD over examples Rd×{−1, 1} is
separable with a (γ, ρ)-margin if there exists (w∗, b∗) such that ‖w‖ = 1
and y(〈w∗, x〉+ b∗) ≥ γ and ‖x‖ ≥ ρ with probability 1 over (x, y) ∼ D.

Theorem 10. Let D be a distribution that is separable with a (γ, ρ)-
margin. Then, with probability 1 − δ over training sample S of size
m,

L0−1
D (Hard-SVM(S)) ≤

√
4(ρ/γ)2

m
+

√
2 log(2/δ)

m

31

This is surprising because the it does not depend on d.

What if the data is not separable? Soft-SVMs coming soon.

7.3 Regularization

We have training examples S = {(x1, y1), . . . , (xm, ym)} with samples
in Rd × {−1, 1}.

RLM = argmin
w

(LS(w) +R(w))

Where R is the complexity of your learned w to prevent over-fitting.

Tikhonov regularization:

R(w) = λ‖w‖2

RLM(S) = argmin
w

(LS(w) + λ‖w‖2

This can be thought of as maximizing stability. Stability: (informally)
a learning algorithm is stable if changing the input a little does not
affect the output much.

Overfitting: ES[LD(A(S))− LS(A(S))].

Notation: Given S = (z1, . . . , zm) and z′, let

S(i) = (z1, . . . , zi−1, z
′, zi+1, . . . , zm)

Theorem 11. Let S = (z1, . . . , zm) be an iid sequence of examples
from D and let z′ ∼ D. Then for any learning algorithm A,

ES∈D[LD(A(S))− LS(A(S))] = E(S,z′)∼Dm+1[l(A(S(i), zi))− l(A(S), zi)]

where i ∼ U(m).

32

Proof.

ES[LD(A(S))] = ES[Ez′∼D[l(A(S), z′)]]

= ES,z′∼Dm+1[l(A(S), z′)]

= ES,z′,∼D×U(m)[l(A(S(i)), zi)]

ES[LS(A(S))] = ES[1/m
∑
i∈[m]

l(A(S), zi)]

= ES,i[l(A(S), zi)]

Definition 18. A learning algorithm A is on-average-replace-one-stable
with rate ε(m) if for all distributions D stability is at most ε(m)

E[. . .] ≤ ε(m)

See previous section for contents of E[. . .].

8 Apocalypse

No notes due to COVID-19 moveout.

9 Neural Networks

9.1 Recap

Logistic regression:

Φsig(Z) = 1/(1 + exp(−Z))

33

Hsig = {x→ Φsig(〈w,x〉) : w ∈ Rd}
Maximum likelihood objective (y ∈ {0, 1})

max Pr((x, y)|w) = Φsig(x)y(1− Φsig(x))1−y

= min log(1 + exp(−y′〈w,x〉))
y ∈ {−1, 1} Logistic loss or cross-entropy loss.

9.2 Logistic loss to neural networks

Rewriting logistic regression for neural nets.

ŷ = σ(x,w)

1-layer neural net. For a 2-layer,

ŷ = σ(σ(x,w(0)),w(1))

w(0) ∈ Rd×h, w(1) ∈ Rh σ can represent other functions than the
cross-entropy loss. Examples include ReLU max(0, x), tanh, 0-1, and
more.

Another interpretation of neural nets is a logistic regression on a map-
ping from the input to some hidden dimension. The goal is to separate
the data in the hidden dimension linearly.

9.3 Expressivity of NNs: how powerful is a neural

net?

Claim 7. A neural net of depth 2 can express any boolean function.

Example 13. Let d = 4.

34

x1 x2 x3 x4 y
0 0 1 1 1

. . .

Writing this in disjunctive normal form (or of ands)

y = x̄1x̄2x3x4 + . . .

We can represent any function with 2d−1 hidden nodes.

This good because we can represent any function. This is bad because
it requires exponential nodes. This can be solved with deep neural
networks (hidden layers at least 3.)

Depth 1 cannot express XOR. Depth 2 can express XOR with 3 nodes.
A neural network can represent the XOR of d vars in 3(3− d) nodes
using in 2 log d layers.

Theorem 12 (Claude Shannon). There exist functions that require
2d−1 nodes regardless of depth.

Theorem 13 (Universal approximation theorem (1989)). A NN of
depth 2 can approximate any continuous function.

Proof. For d = 1, x, thresholds T1 and T2, T1 > T2 gives an impulse
of length T1 − T2. Divide function into chunks and design pulses for
each chunk. Thus a 1-layer network with infinite nodes can mimic a
function.

Similar methods for higher dimensions.

9.4 Sample and time complexity

As shown in UML the sample complexity is

O(|E| log |E|)

35

Where E is the set of parameters. This assumes small number of
parameters. This less relevant because of overparameterization, where
you have more parameters than data points. Run time: ERM for
sign-gated NNs is NP-hard. How do we train then? Treat it like a
convex problem and do SGD.

9.5 Forward propagation and backpropagation

Recall gradient descent: init x0 randomly. k = 0 (count). While
f(xk) − f(xk − 1) > ε or ‖∇xf(xk)‖ > ε, do: k = k + 1, xk+1 =
xk − η∇xf(xk).

For neural nets, loss L(y, ŷ) = 1
m

∑
l(yi, ŷi). Init wk for layers k =

1, . . . K. While loss not converge, do for k = 1, . . . , K,

wk = wk − η∇wk
L(y, ŷ) = wk −

η

m

∑
i

∇wk
l(yi, ŷi)

Forward step: feed the input.

y
(0)
i = x1

for k = 1 . . . N , for j = 1, . . . ,W where W is the kth layer width.

z
(k)
j =

∑
i

w
(k)
ij y

(k−1)
i

y
(k)
h = fk(z

(k)
j)

Backward pass: taking the gradient. Training and updating weights.

y(N) :
∂l

∂ŷi
=

∂l

∂y
(N)
i

36

z(N) :
∂l

∂z
(N)
i

=
∂y

(N)
i

∂z
(N)
i

∂l

∂y
(N)
i

∂y
(N)
i

∂z
(N)
i

= f ′N(z
(N)
i)

w(N) :
∂l

∂w
(N)
11

=
∂z

(N)
i

∂w
(N)
11

∂l

∂z
(N)
1

= y
(N−1)
1

See the book good grief.

10 k-clustering

Give a set of points X in some large space X ′.

Goal: partition points in X into clusters c1, . . . , ck in a way that
minimizes a clustering objective.

10.1 Finding a good objective is non-trivial

• A good objective is not universal.

Example 14. Say that k = 2. Objective is that all points close
to each other are in the same cluster. Another objective is that
the furthest points in a cluster are not far from each other.

• There is no ground truth.

37

10.2 k-means objective

In k-means objective we have centroids.

µ(Ci) = argmin
µ∈X ′

∑
k∈Ci

d(x, µ)2 =
1

Ci

∑
x∈Ci

x

where X ⊆ X ′ is a metric space with distance function d.

Definition 19 (k-means objective). Given clusters C1, . . . , Ck, the
k-means objective is

F (C1, . . . , Ck) =
∑
i∈[k]

∑
x∈Ci

‖x− µ(Ci)‖2

This problem is actually an NP-hard optimization problem. There
exists, however, a popular heuristic algorithm that works pretty well in
practice.

Input: points X ⊆ Rn, number of clusters k

Initialization: Select random centroids µ1, . . . , µk ∈ X ′

Repeat until convergence: ∀i ∈ [k] set Ci = {x ∈ X : i = argmin‖x−
µj‖} (not sure about notation here, but the idea is we put the closest
xs to µi in the cluster. ∀i ∈ [k] update µi = 1

|Ci|
∑
x ∈ Cix.

Return C1, . . . , Ck.

Theorem 14. In the k-means algorithm, at each step the solution is
weakly improved, i.e. in every step t

F (C
(t)
1 , . . . , C

(t)
k) ≤ F (C

(t−1)
1 , . . . , C

(t−1)
k)

where C
(t)
i is the cluster Ci at iteration t ≤ T .

38

Proof. Let µti be the centroid of Ci at iteration t. Take F (Ct
1, . . .) is

less than the sum with µti ← µt−1i and then replace Ct
i with Ct−1

i ,
yielding larger quantities both times. This last replacement yields
F (Ct−1

1 , . . .).

10.3 Other clustering objectives

• k-means: as we have seen.

• k-medioid: restricting mui to a point in the dataset.

• k-median: same as mediod without squaring distances.

11 Unsupervised learning

Here are some examples of unsupervized learning problems. Document
summary: given a document, select k sentances that summarize the
document. Feature selection: given a lots of data, which k types of data
will make prediciton possible? Image compression: given a grid of pixels
make blocks and choose k pixels that represent the block. Ranking:
given webpages with keywords and a query, choose k webpages that
represent all the pages returned by the query.

These can be solved using submodular optimization.

12 Max cover

Discs (n of them) covering points.

Goal: Select k discs that together cover as many points as possible. In
other words find

S ∈ argmax
R:|R|≤k

|
⋃
i∈R

ai|

39

where a1, . . . , an is the set of discs.

Notation: f(s) in the number of points covered by S. fS(R) is the
number of points covered by R not covered by S, also known as the
marginal contribution of R.

Greedy algorithm: Select at each step the disc with largest marginal
contribution and add it to the set. (S ← S ∪ argmaxa fS(a)). Return
S.

This algorithm (greedy) is not optimal. It is possible to construct a
problem that will trick the algorithm. It turns out that max cover is
NP-hard.

Theorem 15. For any instance of max cover, let S be the solution
returned by the greedy algorithm and let O be the optimal solution. It
holds that f(S) ≥ (1− 1/e)f(O), or at least 63% correct.

Proof.

Fact 15.1 (fS is subadditive). In max-cover, for any S ∈ N, fS is
subadditive, or in other words

fS(X ∪ Y) ≤ fS(X) + fS(Y)

Notation: ai is the disc selected at step i of Greedy. Si = {a1, . . . , ai}.

Lemma 15.1. At every step i ∈ {0, 1, . . . , k} of Greedy: f(Si+1) −
f(Si) ≥ 1

k(f(O)− f(Si)). The left side is the marginal contribution of

adding disc ai+1. The right side is 1
kth of the difference between the

optimal and current solution.

40

Proof. O = {o1, o2, . . . , ok}. o∗ ∈ argmaxo∈O fSi
(o).

fSi
(O) ≤

∑
o∈O

fSi
(o) ≤ kfSi

(o∗) ≤ k(f(Si+1)− f(Si))

by the subadditive property. Therefore we have the lemma.

Lemma 15.2. At every step i ∈ {1, . . . , k} we have

f(Si) ≥ (1− (1− 1

k
)i)f(O)

Proof. By induction on i, at i = 1 the proof follows by the previous
lemma. f(Si+1)− f(Si) ≥ 1

((f(O)− f(Si))) which gives us

f(Si) ≥ (1− 1(1− 1

k
))f(O)

now assume that for i ∈ {1, . . . , l} our lemma holds. Now we prove for
l + 1.

f(Sl+1) ≥
1

k
(f(O)− f(Sl)) + f(Sl)

=
1

k
f(O) + (1− 1

k
)f(Sl)

≥ 1

k
f(O) + (1− 1

k
)(1− (1− 1

k
)l)f(O)

= (1− (1− 1

k
)l+1)f(O)

Thus by induction we have the lemma.

Now the proof is done because for k ≥ 1, (1 − 1
k)k ≤ 1/e. Thus for

i = k by the lemmas f(Sk) ≥ (1− 1
e)f(O).

41

13 Unsupervised learning as max cover

Unsupervised learning problems are often maximization under cardi-
nality constraint. The sum is less than the total of its parts.

13.1 Submodularity and examples

Definition 20 (Submodularity). Given a set of elements

N = {a1, . . . , am}

a function f : 2N → R is submodular if for all S ⊆ T and a ∈ N \ T
we have

f(S ∪ a)− f(S) ≥ f(T ∪ a)− f(T)

In other words the marginal cost of adding elements to the set decreases
monotonically as the size of the set increases. Equivalently, a function
f is submodular if for all S, T , f(S ∪ T) ≤ f(S) + f(T)− f(S ∩ T).

Some cannonical examples of submodular functions include

• Single peak: f(S) = maxa∈S f(a)

• Additive functions: f(S) =
∑

a∈S f(a)

• Coverage functions: f(S) = |
⋃
i∈S ai| when a1, . . . , an are discs

containing points in some universe.

• Diversity: f(S) = number of colors in S.

• Cut function: f(S) is the number of edges between S and V \ S
on G = (V,E).

These problems are about increasing entropy in the set.

Definition 21 (Monotonicity). A function f : 2N → R is monotone if
S ⊆ T then F (S) ≤ f(T).

42

There are submodular functions that are not monotone. For instance
the cut function.

The problem we solved last time was essentially ‘given f : 2N → R find k
elements that maximize f . In other words find S = argmaxT :|T |≤k f(T).’

Theorem 16 (Greedy approximation of monotone submodular func-
tions). For any monotone submodular function f : 2N → R running
the greedy algorithm for k steps returns a solution S ≤ 1 such that
f(S) ≤ (1− 1

e) maxT :|T |≤k f(T).

Proof. This follows almost word for word from the theorem of the
previous section.

13.2 Clustering as a submodular objective

Goal: find k representatives points in X .

d(x, u) is the distance between x and u. S = {u1, . . . , un}. L(S) =
1
|X|
∑

x∈X minu∈S d(x, u). Let f(S) = −L(S). We now have a maxi-

mization problem. We add a point x0 to the data set and set f(S) =
L(x0)− L(S) to make f always positive. We are still not done because
f is not normalized.

Definition 22 (Normalization). A function f is normalized if f(∅) = 0.

We finally have a monotone submodular normalized funtion f defined
as

f(S) = L(x0)− L(S ∪ {x0})

If the function is not monotone, we can get arbitrarily bad results, but
randomizing can give us good results.

43

	Introduction
	Mathematical model for statistical learning
	Measuring success of a hypotheses h
	How do we find h?
	Empirical Risk Minimization
	Why could ERM be a bad idea?

	Inductive bias

	Learnability
	Recap
	PAC learnability
	Agnositc PAC learnability
	Learnability via uniform convergence
	Section
	Perceptron

	VC-dimensionality
	PAC learnability recap
	Infinite-size classes can be learnable
	The VC dimension
	Section

	Linear predictors, half spaces, regression
	Recap
	Sample complexity

	Linear predictors
	Halfspaces
	Linear programming
	ERM using LPs in the realizable case

	Regression
	Section

	Convex learning problems
	Recap
	Convex loss functions
	Logistic regression
	Elements of convex loss functions

	Section

	Gradient descent
	Recap
	Gradient descent
	Stochastic gradient descent

	Surrogate loss functions, SVMs, regularization
	Surrogate loss functions
	SVMs
	Hard-SVM
	Hard SVM sample complexity

	Regularization

	Apocalypse
	Neural Networks
	Recap
	Logistic loss to neural networks
	Expressivity of NNs: how powerful is a neural net?
	Sample and time complexity
	Forward propagation and backpropagation

	k-clustering
	Finding a good objective is non-trivial
	k-means objective
	Other clustering objectives

	Unsupervised learning
	Max cover
	Unsupervised learning as max cover
	Submodularity and examples
	Clustering as a submodular objective

