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The solar corona

Looks really cool.

Made of plasma (ions).
150-450x hotter than the sun surface.

The sun’s magnetic field causes
coronal loops.




The technical details Consequences of knowing the LLM image What now?
00000 000000 0000

The analogy

® Scientists study the structure of coronal loops to learn about the sun’s internal
magnetic fields.

. @ OpenAl



The technical details Consequences of knowing the LLM image What now?
00000 000000 0000

The analogy

® Scientists study the structure of coronal loops to learn about the sun’s internal
magnetic fields.

® We can study the structure of LLM outputs to learn about their internal details.

. @ OpenAl



The technical details Consequences of knowing the LLM image What now?
00000 000000 0000

The analogy

® Scientists study the structure of coronal loops to learn about the sun’s internal
magnetic fields.

® We can study the structure of LLM outputs to learn about their internal details.

. & OpenAl

® The sun ® Proprietary LLMs
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® The sun’s magnetic field ® Non-public model details
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The analogy

® Scientists study the structure of coronal loops to learn about the sun’s internal
magnetic fields.

® We can study the structure of LLM outputs to learn about their internal details.

. & OpenAl

® The solar corona * LLM API outputs
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The structure of LLM outputs

LLM outputs lie within a low-dimensional space.

Space of probability distributions over 3 items
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The set of next-token distributions

Next-token distributions over a vocabulary of size v are

® v-tuples of reals.
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The set of next-token distributions

Next-token distributions over a vocabulary of size v are
® v-tuples of reals.

® Non-negative, sum to 1.
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The set of next-token distributions

Next-token distributions over a vocabulary of size v are
® v-tuples of reals.
® Non-negative, sum to 1.

® Known as the v-simplex, or A,.
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Probability distributions are vectors

® A, is a vector space.
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Probability distributions are vectors

® The softmax function is a linear map R® — A,.

& Matthew Finlayson @mattfin - Oct 5
Did you know that the softmax function is linear?

I knew that 22.2%
1 did not know that 20%
I don’t believe you 57.8%

45 votes - Final results
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Probability distributions are vectors

® The softmax function is a linear map R® — A,.

& Matthew Finlayson @mattfin - Oct 5
Did you know that the softmax function is linear?

I knew that 22.2%
1 did not know that 20%
I don’t believe you 57.8%

45 votes - Final results

softmax(RY) clr (softmax(R?))
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LLM outputs lie on a low-dimensional vector subspace

® The image of a function is its codomain.
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LLM outputs lie on a low-dimensional vector subspace

® The dim of a linear map’s image is < the dim of its domain.

Rd
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LLM outputs lie on a low-dimensional vector subspace

® softmax oW is a linear map R? — A,

R 5% RO softmax A,
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LLM outputs lie on a low-dimensional vector subspace

® The dim of an LLM’s image is at most d

5% softmax
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LLM outputs lie on a low-dimensional vector subspace

® 4 LLM outputs form a basis for its image.

R 5% RO softmax A,
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«— im(W) «— im(softmax o W)
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Cheap, full LLM outputs

Stealing Machine Learning Models via Prediction APIs
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Cheap, full LLM outputs

Common APIs give top-k tokens and probabilities.

Logit bias allows boosting tokens to top-k.
Extracting full outputs takes O(v/k) API calls.
Once the LLM image is known, only O(d/k) calls.

® Intuition: position in a d-dimensional subspace is fully specified by d
coordinates.
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Finding the embedding size

Collect at least d outputs from the model, check the dimension of the space that they
span.
® Create a matrix P with LLM outputs as columns.
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Finding the embedding size
Collect at least d outputs from the model, check the dimension of the space that they
span.

® P will have d nonzero singular values.
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Output attribution

LLM outputs lie uniquely in the image of the model that generated them.
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Output attribution

LLM outputs lie uniquely in the image of the model that generated them.
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® AGIInc.s new LLM API secretly serves Llama 2.
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Output attribution

LLM outputs lie uniquely in the image of the model that generated them.
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® AGI Inc. uses a hidden prompt to modify the logits.
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Output attribution

LLM outputs lie uniquely in the image of the model that generated them.
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® We can catch AGI Inc. because its API outputs remain in Llama 2’s image.
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Change Interpretation

No update
No logit change, no image change
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Minor vs. major model updates

Table: Your favorite LLM API’s logits have changed. What happened?

Change Interpretation

Logit change, no image change Hidden prompt change or partial
finetune
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Minor vs. major model updates

Table: Your favorite LLM API’s logits have changed. What happened?
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Change Interpretation

Low-rank image change LoRA update
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Minor vs. major model updates

Table: Your favorite LLM API’s logits have changed. What happened?
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Change Interpretation

Image change Full finetune
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Other uses for LLM images

® Unargmaxable tokens
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Andreas Grivas and Nikolay Bogoychev and Adam Lopez
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Other uses for LLM images

® Recovering the softmax matrix

Low-Rank Can Have Unar Classes in Theory
but Rarely in Practice

Andreas Grivas and Nikolay Bogoychev and Adam Lopez
Institute for Language, Cognition, and Computation
School of Informatics
University of Edinburgh
(agrivas, n.bogoych, alopez}@ed.ac.uk
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Other uses for LLM images

® Basis-aware sampling

Can Have Unar ble Classes in Theory
but Rarely in Practice

Andreas Grivas and Nikolay Bogoychev and Adam Lopez
Institute for Language, Cognition, and Computation
School of Informatics
University of Edinburgh
{agrivas, n.bogoych, alopez}@ed.ac.uk

CLOSING THE CURIOUS CASE OF NEURAL TEXT
DEGENERATION

Matthew Finlayson® John Hewitt Alexander Koller
University of Southern California Stanford University Saarland University
Swabha Swayamdipta Ashish Sabharwal

University of Southern California The Allen Institute for A
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Mitigations
Proposal Cons
Discontinue top-k probs Only slows attack
Remove softmax bottleneck Expensive training, inference
Discontinue logit bias Nerfs API

Recommendation: do nothing; LLM images are useful for accountability.
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Some future directions

¢ Efficient image extraction methods for strict APIs.
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Some future directions

® More audit methods for LLMs.
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Some future directions

® Stealing more than the image.
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Thank you for coming!

LLM outputs occupy a low-dimensional space: the image.
¢ Common APl interfaces leak the LLM image.

LLM images expose non-public information.

LLM images are a tool for accountability.



	The technical details
	Consequences of knowing the LLM image
	What now?

