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The analogy

• Scientists study the structure of coronal loops to learn about the sun’s internal
magnetic fields.

• We can study the structure of LLM outputs to learn about their internal details.

• The sun
• The sun’s magnetic field
• The solar corona

• Proprietary LLMs
• Non-public model details
• LLM API outputs
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The structure of LLM outputs

LLM outputs lie within a low-dimensional space.
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Section 1

The technical details
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The set of next-token distributions

Next-token distributions over a vocabulary of size v are
• v-tuples of reals.
• Non-negative, sum to 1.
• Known as the v-simplex, or Δv.
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Probability distributions are vectors

• Δv is a vector space.
• The softmax function is a linear map Rv → Δv.
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Probability distributions are vectors
• Δv is a vector space.
• The softmax function is a linear map Rv → Δv.

Rv softmax(Rv) clr (softmax(Rv))
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LLM outputs lie on a low-dimensional vector subspace
• The image of a function is its codomain.
• The dim of a linear map’s image is ≤ the dim of its domain.
• softmax ◦W is a linear map Rd → Δv.
• The dim of an LLM’s image is at most d
• d LLM outputs form a basis for its image.
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Consequences of knowing the LLM image
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Cheap, full LLM outputs

• Common APIs give top-k tokens and probabilities.
• Logit bias allows boosting tokens to top-k.
• Extracting full outputs takes O(v/k) API calls.
• Once the LLM image is known, only O(d/k) calls.
• Intuition: position in a d-dimensional subspace is fully specified by d

coordinates.
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Finding the embedding size

Collect at least d outputs from the model, check the dimension of the space that they
span.
• Create a matrix P with LLM outputs as columns.
• P will have d nonzero singular values.
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Finding the embedding size
Collect at least d outputs from the model, check the dimension of the space that they
span.
• Create a matrix P with LLM outputs as columns.
• P will have d nonzero singular values.
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Output attribution

LLM outputs lie uniquely in the image of the model that generated them.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·105

10−5

103

1011

Training step

Re
si
du

al

pythia-70m
pythia-70m-deduped
pythia-160m

• AGI Inc.’s new LLM API secretly serves Llama 2.
• AGI Inc. uses a hidden prompt to modify the logits.
• We can catch AGI Inc. because its API outputs remain in Llama 2’s image.
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Minor vs. major model updates

Table: Your favorite LLM API’s logits have changed. What happened?

Change Interpretation

No logit change, no image change
No update

Logit change, no image change Hidden prompt change or partial
finetune

Low-rank image change LoRA update
Image change Full finetune
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• Unargmaxable tokens
• Recovering the softmax matrix
• Basis-aware sampling
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Mitigations

Proposal Cons

Discontinue top-k probs Only slows attack
Remove softmax bottleneck Expensive training, inference
Discontinue logit bias Nerfs API
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Mitigations

Proposal Cons

Discontinue top-k probs Only slows attack
Remove softmax bottleneck Expensive training, inference
Discontinue logit bias Nerfs API

Recommendation: do nothing; LLM images are useful for accountability.
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Some future directions

• Efficient image extraction methods for strict APIs.
• More audit methods for LLMs.
• Stealing more than the image.
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Thank you for coming!

• LLM outputs occupy a low-dimensional space: the image.
• Common API interfaces leak the LLM image.
• LLM images expose non-public information.
• LLM images are a tool for accountability.
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